Least-squares Finite Element Methods for First-order Elliptic Systems

نویسنده

  • PAVEL BOCHEV
چکیده

Least-squares principles use artificial " energy " functionals to provide a Rayleigh-Ritz-like setting for the finite element method. These function-als are defined in terms of PDE's residuals and are not unique. We show that viable methods result from reconciliation of a mathematical setting dictated by the norm-equivalence of least-squares functionals with practicality constraints dictated by the algorithmic design. We identify four universal patterns that arise in this process and develop this paradigm for first-order ADN elliptic systems. Special attention is paid to the effects that each discretization pattern has on the computational and analytic properties of finite element methods, including error estimates, conditioning of the algebraic systems and the existence of efficient preconditioners.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nonconforming elements in least-squares mixed finite element methods

In this paper we analyze the finite element discretization for the first-order system least squares mixed model for the second-order elliptic problem by means of using nonconforming and conforming elements to approximate displacement and stress, respectively. Moreover, on arbitrary regular quadrilaterals, we propose new variants of both the rotated Q1 nonconforming element and the lowest-order ...

متن کامل

Analysis of First-Order System Least Squares (FOSLS) for Elliptic Problems with Discontinuous Coefficients: Part I

First-order system least squares (FOSLS) is a recently developed methodology for solving partial differential equations. Among its advantages are that the finite element spaces are not restricted by the inf-sup condition imposed, for example, on mixed methods and that the least-squares functional itself serves as an appropriate error measure. This paper studies the FOSLS approach for scalar sec...

متن کامل

Analysis and approximation of optimal control problems for first-order elliptic systems in three dimensions

We examine analytical and numerical aspects of optimal control problems for firstorder elliptic systems in three dimensions. The particular setting we use is that of divcurl systems. After formulating some optimization problems, we prove the existence and uniqueness of the optimal solution. We then demonstrate the existence of Lagrange multipliers and derive an optimality system of partial diff...

متن کامل

An Adaptive Least-Squares Mixed Finite Element Method for Fourth- Order Elliptic Equations

A least-squares mixed finite element (LSMFE) method for the numerical solution of fourth-order elliptic equations is analyzed and developed in this paper. The a posteriori error estimator which is needed in the adaptive refinement algorithm is proposed. The local evaluation of the least-squares functional serves as a posteriori error estimator. The posteriori errors are effectively estimated.

متن کامل

On Least-squares Variational Principles for the Discretization of Optimization and Control Problems

The approximate solution of optimization and control problems for systems governed by linear, elliptic partial differential equations is considered. Such problems are most often solved using methods based on the application of the Lagrange multiplier rule followed by discretization through, e.g., a Galerkin finite element method. As an alternative, we show how least-squares finite element metho...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004